Motion in a straight line

Objective: Revision and application of the 3 equations of motion (for constant acceleration)

- 1. A body starts from rest and moves with uniform acceleration. If it attains a velocity of 20ms⁻¹ in 5 seconds then find (a) its acceleration (b) its displacement.
- 2. A body starts from rest and covers a distance of 200 m in 10 seconds moving with uniform acceleration in the same direction in a straight line. Find the acceleration and final velocity of the body.
- 3. A body starts from rest and moves with uniform acceleration. If it attains a velocity of 20ms⁻¹ while undergoing a displacement of 200 then find (a) its acceleration (b) its time of travel.
- 4. A body moving with an initial velocity of 40ms⁻¹, decelerates uniformly to come to rest in 10 seconds. Find (a) its deceleration (b) its displacement as it comes to rest.
- 5. A body moving with an initial velocity of 10ms⁻¹, decelerates uniformly to come to rest in 40 m. Find (a) its deceleration (b) time taken by it to come to rest.
- 6. A body having an initial velocity of 5ms⁻¹ attains a velocity of 15ms⁻¹ as it undergoes a displacement of 100m with uniform acceleration. Find its (a) acceleration (b) time of travel.
- 7. A body having an initial velocity of 10ms⁻¹ attains a velocity of 30ms⁻¹ in 5 seconds with uniform acceleration. Find its (a) acceleration (b) displacement.
- 8. Two bodies A and B start from the same point and move in the same direction with uniform accelerations of 2ms⁻² and 3ms⁻² respectively for 5 seconds. Find (a) the ratio of their final velocities (b) distance between them.
- 9. Two bodies A and B start from the same point and move in opposite directions, with uniform accelerations of 1ms⁻² and 2ms⁻² respectively for 10 seconds. Find (a) the ratio of their final speeds (b) distance between them.
- 10. Two bodies A and B are separated by a distance of 1200m. They start from rest and move towards each other with uniform accelerations of 4.0ms⁻² and 2.0ms⁻² respectively. Find (a) the instant of time when they meet each other (b) distance covered by each of them as they meet (c) ratio of their speeds when they meet.

Motion in a straight line

Answers

- 1. (a) 4 ms⁻²
- 2. (a)4 ms⁻² (b) 40 ms⁻¹
- 3. (a)1 ms⁻²
- (b) 20 s

(b) 50 m

- 4. (a)-4 ms⁻²
- (b) 200 m
- 5. (a) -1.25 ms⁻²
- (b) 8 s
- 6. (a) 1 ms⁻²
- (b) 10 s
- 7. (a) 4 ms⁻²
- (b) 100 m
- 8. (a) 2:3
- (b) 12.5 m
- 9. (a) 1:2
- (b) 150 m
- 10. (a) 20 seconds
- (b) 800 m and 400 m respectively (c) 2:1